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Abstract
Solutions to the four-dimensional Euclidean Weyl equation in the background
of a general JNR N-instanton are known to be normalizable and regular
throughout 4-space. We show that these solutions are asymptotically given by a
linear combination of simple singular solutions to the free Weyl equation, which
can be interpreted as localized spinors. The ‘spinorial’ data parametrizing the
asymptotics of the delocalized solutions to the Weyl equation in the presence of
the instanton almost determine the background instanton, yet not completely.
However, they capture the geometry and symmetry of the underlying instanton
configuration.

PACS numbers: 11.15.−q, 04.20.Gz, 02.20.Bb

1. Introduction

It is a well-known fact that in the case of massless particles the Weyl equation, rather than
the Dirac equation, provides an adequate description of particles with negative helicity, if we
ignore positive helicity particles, or conversely. One finds that in two-dimensional Euclidean
spacetime the Weyl equation is equivalent to the Cauchy–Riemann equations. Thus the class of
solutions is given by the holomorphic functions. To interpret the solutions as localized classical
particles, they must approach zero at infinity. If one also insists on their analyticity in the
whole of Euclidean 2-space, the only possible solutions are the constants (Liouville’s theorem).
Hence, any interesting solutions that tend to zero at infinity must exhibit a singularity. In the
simplest case, these solutions are therefore just given by f (z) = a/(z − b), characterized by
two complex constants, the residue a of the function and the position parameter b. However,
the singularity makes the interpretation of these solutions as well-behaved particles again
difficult.

In Euclidean 4-space we find a similar situation. Here the Weyl equation for negative
helicity particles is equivalent to the so-called Cauchy–Riemann–Fueter equation, the
quaternionic analogue of the Cauchy–Riemann equations. Just as holomorphic functions
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satisfy the latter, quaternionic regular functions satisfy the former. This definition of
quaternionic regular functions is the basis of quaternionic analysis, which provides us with
quaternionic analogues of, for example, Cauchy’s theorem, Cauchy’s integral formula and
the Laurent expansion [1]. Since the proof of Liouville’s theorem depends only on Cauchy’s
integral formula, there exists also the quaternionic analogue of this theorem. Hence, again
any interesting regular function that approaches zero at infinity has to be singular in at least
one point and thus, cannot easily be interpreted as a classical particle.

However, if one considers the Weyl equation in the background of an instanton, i.e.
a topologically non-trivial solution to the four-dimensional Euclidean Yang–Mills equation,
one finds that the instanton ‘washes out’ the singularity, leaving as a solution an everywhere
nicely behaved particle. By this we mean that the asymptotic behaviour of the solution to the
free Weyl equation and the solution in the instanton background agree to appropriate order,
i.e. up to and including terms of O(r−4). Since the solution to the free equation and the
solution in the instanton background are topologically inequivalent, a comparison of the two
depends on a careful choice of gauge. It can be seen from the quaternionic Laurent series
that the first term of the expansion, which is of order O(r−3), is analogous to a dipole field
in three space dimensions, whereas the second is the analogue of a quadrupole field. The
dipole term is characterized by one quaternionic constant, the quaternionic analogue of a
residue. In contrast, the quadrupole term is characterized by three quaternionic constants, the
interpretation of which is less clear. However, they can be shown to reflect the symmetry of
the underlying instanton configuration.

In the following section, we will briefly explain the concept of an instanton [2], followed
by the description of a special class of instantons, the so-called Jackiw–Nohl–Rebbi (JNR)
instantons [3]. We will then describe the solutions to the four-dimensional Euclidean Weyl
equation in the background field of an arbitrary JNR instanton, as investigated by Grossman
[4]. We will then briefly summarize the theorems of quaternionic analysis [1] that are most
important for us, before starting to describe our own results.

2. Euclidean Yang–Mills configurations

In four-dimensional Euclidean spacetime the Yang–Mills field equations possess localized
solutions having a finite Euclidean action. These solutions are called instantons. Topologically
distinct from the trivial absolute minimum of the action functional, instantons do not have
a vanishing field strength Gµν . However, Gµν has to vanish on the boundary of Euclidean
4-space, S3

∞, which implies that the corresponding potential Aµ tends asymptotically to a
pure gauge, thus defining a mapping from the 3-sphere at infinity into the manifold of the
gauge group. Instantons are therefore characterized by a topological invariant N, the so-called
Pontryagin index, which takes integer values.

In the case of an SU(2) theory this index is the degree of the mapping of S3
∞ into

SU(2) =∼ S3, and is equal to the homotopy index, which characterizes the discrete infinity
of homotopy classes of mappings S3 → S3. Within each class N, the action is bounded
from below by a constant multiple of |N | and the absolute minimum value is attained when
the field strength satisfies Gµν = ±∗Gµν , where ∗Gµν is the dual field tensor given by
∗Gµν = 1

2εµνρσGρσ .
Strictly speaking, instantons are self-dual solutions of the Yang–Mills equation whereas

anti-self-dual solutions are referred to as anti-instantons. The fundamental difference between
instantons and anti-instantons is the sign of the Pontryagin index, which is positive for
instantons but negative for anti-instantons. For definiteness we will in the following only
consider instantons though most results will be applicable to anti-instantons as well.



Delocalized spinors 1417

3. JNR instantons

The general N-instanton solution has been constructed implicitly by Atiyah et al in 1978 [5]
for an arbitrary compact classical gauge group. In the case of SU(2), 8N − 3 parameters
characterize the solutions. A subspace of these solutions can be constructed explicitly. These
special instantons exhibit only 5N + 4 parameters and were found by Jackiw, Nohl and
Rebbi already in 1977 [3]. However, in the case of N = 2 this JNR solution to the self-
duality equation is the most general one [6] since an N = 2 instanton is fully described by
13 physical parameters. The 14th parameter occurring in the JNR formula corresponds to a
gauge transformation. An even more restrictive subspace consists of the ’t Hooft instantons
[7]. These are characterized by 5N parameters and thus give the most general N = 1 instanton.
The N = 1 ’t Hooft instanton is related to the JNR N = 1 instanton via a gauge transformation
[8].

We begin by briefly summarizing the construction of the JNR N-instanton solution as
described in [2, 3]. To simplify notation we consider the matrix representation of the gauge
potential Aµ taking values in the Lie algebra of SU(2),

Aµ = Aa
µ

σa

2i
. (3.1)

Here σa are the familiar Pauli matrices and Aa
µ, a = 1, 2, 3, are the components of the

potential. The field strength is given by

Gµν = ∂µAν − ∂νAµ + [Aµ,Aν]. (3.2)

It is useful to define the following matrices:

α0 = 12 αi = −iσi ᾱ0 = 12 ᾱi = iσi (3.3)

and

σ̄µν = 1

4i
(ᾱµαν − ᾱναµ). (3.4)

Note that σ̄µν is both antisymmetric and anti-self-dual in its indices. In order to solve the
self-duality equation for the field strength

Gµν = ∗Gµν (3.5)

one makes an ansatz of the form

Aµ = iσ̄µνaν with aν = ∂ν ln ρ. (3.6)

ρ(x) is a scalar potential which must satisfy �ρ(x) = 0. Here � is the four-dimensional
Euclidean Laplace operator. Note that the anti-self-dual symbols σ̄µν in the potential Aµ lead
to a self-dual field strength. One finds for ρ(x) 1

ρ(x) =
N+1∑
k=1

λ2
(k)

(x − x(k))2
. (3.7)

This solution when inserted in equation (3.6) yields an N-instanton solution with homotopy
index N. Note that although ρ has a singularity at each point x(k), the instanton field strength
has no singularity.

It is important to note that the scalar potential ρ depends on N + 1 position parameters
x(k), and there is no simple relation between these and the positions of the N instantons. In
contrast, a ’t Hooft instanton has a scalar potential depending on N position parameters indeed

1 ’t Hooft’s solution takes the form ρ(x) = 1 +
∑N

k=1
λ2
(k)

(x−x(k))
2 .
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corresponding to the positions of the instantons. The other N JNR parameters, the weights
λ2

(k), are indirectly related to the sizes of the instantons, but note that a common rescaling of
the λ2

(k) does not affect the potential Aµ.
As shown by Jackiw, Nohl and Rebbi [3] the ansatz in equations (3.6) and (3.7) completely

fixes the gauge, as long as the N points x(k) do not lie on a circle (or on a straight line, which is
a circle through the point at infinity). However, three points always lie on a circle and hence in
the case of an N = 2 instanton one of the 14 parameters corresponds to a gauge transformation
which moves the x(k) around the circle.

4. Solutions to the massless Dirac equation in an N-instanton background

Solutions to the massless Dirac equation in the background of an N-instanton have been
explicitly constructed by Grossman [4] with the gauge group being SU(2). Later, Corrigan
et al [9] and independently Osborn [10] derived these solutions for an SU(n) or Sp(k) gauge
group, respectively. However, the latter solutions are only implicitly known. We will now
briefly explain Grossman’s construction, using, however, a slightly different notation.

The zero modes of the massless Dirac equation can be chosen to be chiral eigenfunctions
of γ5. According to Grossman it is possible to construct N solutions of negative helicity, when
the field strength is self-dual2. These are all possible solutions because a vanishing theorem
asserts that there are no solutions of positive helicity, and a version of the Atiyah–Singer
index theorem states that the difference between the number of negative and positive helicity
solutions must equal in absolute value the Pontryagin index N.

The massless Dirac equation in the background of an SU(2) gauge potential Aµ is

(∂µ + Aµ)γµψ = 0. (4.1)

We choose a representation of the γ matrices in which γ5 = γ0γ1γ2γ3 is diagonal. This is
given by

γ0 =
(

0 12

12 0

)
γi =

(
0 −iσi

iσi 0

)
γ5 =

(−12 0
0 12

)
. (4.2)

Setting ψ = (
ψR
ψL

)
such that ψR and ψL are 2×2 matrices in spin and isospin, we get decoupled

equations for the right-handed (negative helicity) and left-handed (positive helicity) spinors:

(∂µ + Aµ)ᾱµψR = 0 (4.3)

(∂µ + Aµ)αµψL = 0. (4.4)

It will be convenient to slightly rewrite equation (4.3). We have, preserving all matrix indices
for the moment,

(∂µδij + (Aµ)ij )(ᾱµ)βγ ψγj = 0. (4.5)

Using the fact that σ t
k = εσkε, where ε is the usual totally antisymmetric tensor with ε12 = 1,

and redefining the field ψ ′
R = ψ t

Rε, such that ψ ′
R is a 2 × 2 matrix in isospin and spin, with

components ψ ′R
jα (here j = 1, 2 is the isotopic index and α = 1, 2 is the Lorentz index),

equation (4.5) becomes

(∂µδij + (Aµ)ij )ψ
′
jβ(αµ)βγ = 0 (4.6)

2 Grossman’s actual derivation holds for positive helicity particles. However, as he points out, the analysis will
likewise lead to N negative helicity solutions when considering self-dual fields Gµν , rather than anti-self-dual fields.
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or in index-free notation

(∂µ + Aµ)ψ ′
Rαµ = 0. (4.7)

Note that all products occurring in equation (4.7) are now to be interpreted as matrix products.
Defining

φ(k) = λ2
(k)

(x − x(k))2
k = 1, . . . , N + 1 (4.8)

and

M(k)
µ = ρ1/2∂µ

(
φ(k)

ρ

)
(4.9)

with ρ given by equation (3.7), one finds N + 1 solutions of the form

ψ ′(k)

R = M
(k)
β ᾱβ . (4.10)

However, since

N+1∑
k=1

M(k)
µ = 0 (4.11)

there are only N linearly independent solutions.
In the following we will briefly describe some major results of the theory of quaternionic

regular functions, as they are solutions to the four-dimensional Weyl equation without a gauge
field. We shall follow Sudbery’s paper [1], which gives a self-contained and rigorous account
of quaternionic analysis.

5. Quaternionic analysis

Quaternionic analysis was developed by Fueter and his collaborators in the years following
1935, when Fueter proposed the definition of regular for quaternionic functions [11].

A generic quaternion can be written as

q = 1x0 + ix1 + jx2 + kx3 with xµ ∈ R µ = 0, . . . , 3 (5.1)

where 1, i, j and k denote the elements of the standard basis for R4. One defines the
quaternionic product on R4 as the R-bilinear product

R4 × R4 → R4 (q1, q2) �→ q1q2 (5.2)

with unit element 1, such that

i2 = j 2 = k2 = −1 (5.3)

ij = k = −ji jk = i = −kj ki = j = −ik. (5.4)

Here we will identify the subfield spanned by 1 with R. The linear space R4 with the
quaternionic product defines the real associative algebra H of the quaternions (see, e.g., [12]).

We will sometimes use ei, i = 1, 2, 3, to denote the basic quaternions i, j and k, and e0

to denote 1. Then equation (5.1) becomes

q = eµxµ (5.5)

where summation over repeated indices is implied.
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Identifying the subfield spanned by 1 and k with the complex field C we will sometimes
write

q = y + jz (5.6)

where y = x0 + kx3 and z = x2 + kx1. The conjugate of q is q̄ = x0 − eixi and the modulus
is |q| = √

qq̄ = √
xµxµ ∈ R. We have q1q2 = q̄2q̄1 and q−1 = q̄/|q|2.

The following definition of a regular function is the most convenient for our purposes
(Sudbery gives a different definition, but shows that it is equivalent to this).

Definition 1 (the Cauchy–Riemann–Fueter equations). A real-differentiable, quaternion-
valued function f : R4 → H is right-regular at q if and only if

∂f

∂x0
+

∂f

∂x1
i +

∂f

∂x2
j +

∂f

∂x3
k = 0. (5.7)

It is left-regular at q if and only if

∂f

∂x0
+ i

∂f

∂x1
+ j

∂f

∂x2
+ k

∂f

∂x3
= 0. (5.8)

The analysis of regular quaternionic functions is comparable to that of holomorphic
functions, since the quaternionic analogues of Cauchy’s theorem, Cauchy’s integral theorem
and the Laurent series exist for regular functions. As many of the standard theorems of complex
analysis depend only on Cauchy’s theorem, they also hold for quaternionic regular functions.
An example of this is Liouville’s theorem. Hence, a quaternionic function, which is regular
in the whole of R4 and that tends to zero as |q| → ∞ must necessarily reduce to a constant.
Also, regular functions automatically satisfy the four-dimensional Laplace equation. We will
in the following consider only right-regular functions which we shall call simply regular3.

Setting q = y + jz, as in equation (5.6), and f = h + gj , where g and h are complex-
valued functions, we find that equation (5.7) is equivalent to the pair of complex equations

−∂z̄g + ∂ȳh = 0 ∂yg + ∂zh = 0. (5.9)

In the absence of a background field these complex equations correspond to equation (4.7),
which is the Weyl equation for right-handed spinors. Note that it is permitted to multiply f

by an arbitrary constant from the left.
For our purposes, Sudbery’s discussion of regular power series is especially important.

Sudbery introduces the following differential operator:

∂ν = ∂n

∂xi1 · · · ∂xin

= ∂n

∂x1
n1∂x2

n2∂x3
n3

. (5.10)

This calls for some explanation. ν is an unordered set of n integers {i1, . . . , in} with 1 � ir � 3.
The number of 1’s in ν is given by n1, the number of 2’s by n2 and the number of 3’s by n3

such that n1 + n2 + n3 = n. Hence there are 1
2 (n + 1)(n + 2) such sets ν and we will denote the

collection of these sets as sn. They are to be used as labels. If n = 0, i.e. ν = ∅, we use the
suffix 0 instead of ∅.

We will furthermore need the following two quaternion-valued functions:

Gν(q) = ∂νG(q) with G0(q) ≡ G(q) = q−1

|q|2 (5.11)

3 Sudbery chooses to develop the theory of quaternionic analysis for left-regular functions. However, his results are
easily rewritten for right-regular functions.
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and

Pν(q) = 1

n!

∑ (
x0ei1 − xi1

) · · · (x0ein − xin

)
with P0(q) = 1 (5.12)

where the sum is over all n!/(n1!n2!n3!) different orderings of n1 1’s, n2 2’s and n3 3’s. Note
that the Pν are both right- and left-regular. We have

1

2π2

∫
S

Pµ(q)DqGν(q) = δµν (5.13)

and, since the Pν are also left-regular, we have as well

1

2π2

∫
S

Gµ(q)DqPν(q) = δµν. (5.14)

Here S is any 3-sphere surrounding the origin and the measure Dq is the quaternion-valued
3-form

Dq = dx1 ∧ dx2 ∧ dx3 − εijkeidx0 ∧ dxj ∧ dxk. (5.15)

Sudbery then proves the following theorem (here slightly simplified):

Theorem 1 (the Laurent series). Suppose f is regular in an open set U except possibly at
q0 ∈ U . Then there is a neighbourhood N of q0 such that if q ∈ N and q = q0, f (q) can be
represented by a series

f (q) =
∞∑

n=0

∑
ν∈sn

(aνPν(q − q0) + bνGν(q − q0)) (5.16)

which converges uniformly in any hollow ball

{q : r � |q − q0| � R} with r > 0 which lies inside N.

The coefficients aν and bν are given by

aν = 1

2π2

∫
C

f (q)DqGν(q − q0) (5.17)

bν = 1

2π2

∫
C

f (q)DqPν(q − q0) (5.18)

where C is any 3-sphere in U enclosing q0.

6. The Dirac equation in quaternionic notation

As remarked in the previous section, the Weyl equation for right-handed spinors in the absence
of an external field4

∂µψαµ = 0 (6.1)

corresponds to the complex version of the Cauchy–Riemann–Fueter equation, when one uses
the complex variables y = x0 + ix3, z = x2 + ix1

−∂z̄ψ1 + ∂ȳψ2 = 0 ∂yψ1 + ∂zψ2 = 0.

Here (ψ1, ψ2) are the two complex components of ψ .
The correspondence of the Cauchy–Riemann–Fueter equation to the free Weyl equation

can be seen more directly. Since the group of quaternions with absolute value 1, namely the
4 We drop the prime and the subscript R from now on.
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symplectic group Sp(1), is isomorphic to SU(2), we can rewrite equation (6.1) identifying
−iσj with the quaternionic ej , j = 1, 2, 3. This yields directly the Cauchy–Riemann–Fueter
equation (5.7) in terms of quaternionic variables

∂µψqeµ = 0 (6.2)

where ψq is the single quaternionic function

ψq = ψ2 + ψ1j. (6.3)

We now turn to the Weyl equation (4.7) with a background field

(∂µ + Aµ)ψαµ = 0 (6.4)

where ψ is again a 2 × 2 matrix in isospin and spin. Here, again, we can use the isomorphism
Sp(1) =∼ SU(2) to rewrite equation (6.4). Applying this to both the Lorentz group and the
gauge group will not be possible in general, since it would result in combining the four complex
components of ψ into a single quaternionic function. However, for our purpose it will be
convenient to impose the following SU(2) gauge-invariant conditions on the four complex
components of ψ , which will allow us to rewrite equation (6.4) in a purely quaternionic
notation:

ψ =
(

ψ11 ψ12

ψ21 ψ22

)
=

(
ψ11 ψ12

−ψ̄12 ψ̄11

)
. (6.5)

Note that these conditions can be viewed as a Majorana condition. If we set

�M =




ψ11

ψ12

−ψ̄12

ψ̄11


 (6.6)

we find

�M = �C
M with �C

M ≡ C�̄ t
M. (6.7)

Here C is the charge conjugation operator given by C = γ0γ2 and �̄ = �†γ0 is the usual
Dirac conjugate spinor.

Setting A
q
µ = 1

2eaA
a
µ we find that equation (6.4) simplifies to(

∂µ + Aq
µ

)
ψqeµ = 0 (6.8)

where ψq is now a single quaternionic object, given by

ψq = ψ̄11 − ψ̄12j = ψ22 + ψ21j. (6.9)

For the gauge transformation of ψq and A
q
µ we have

ψq −→ qψq (6.10)

Aq
µ −→ qAq

µq−1 − (∂µq)q−1 (6.11)

with q a unit quaternion-valued function, i.e. |q| = 1.
As the simplest singular solution to (the complex) equation (6.1) we find

ψ = 1

(yȳ + zz̄)2

(
āy + bz̄ āz − bȳ

−az̄ + b̄y aȳ + b̄z

)
(6.12)

where we have already imposed the conditions (6.5). If we write a = c0 + ic3, b = c2 + ic1,
where we assume cµ to be the components of some real vector c, we may write instead

ψ = (c · α)(x · ᾱ)

r4
(6.13)

with r =
√

x2 the distance from the origin.
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In quaternionic notation we have (identifying as usual the quaternionic k with the
complex i)

ψq = 1

(yȳ + zz̄)2
(a + jb)(ȳ − z̄j ). (6.14)

Setting q = y + jz as in equation (5.6) and defining cq = a + jb we have

ψq = cq

q̄

|q|4 = cq

q−1

|q|2 = cqG(q) (6.15)

with G(q) as defined in equation (5.11). Note that this is the general ‘dipole’ term of the
quaternionic Laurent expansion (5.16). Thus, ψq is regular except at the origin.

As we shall show in the following, the solutions to equation (6.4) in the presence of a JNR
N-instanton can be written up to quadrupole order, i.e. up to and including terms of O(r−4), as
a linear combination of shifted dipoles. However, this depends on a careful choice of gauge,
as will be shown below.

7. 1/r expansion of Grossman’s solution

In the background field of a JNR N-instanton there exist N + 1 (linearly dependent) solutions
to the Weyl equation for right-handed spinors, which are given by equations (4.8)–(4.10)

ψ(k) = M
(k)
β ᾱβ k = 1, . . . , N + 1.

Calculating these explicitly, we find for M(k)
µ

M(k)
µ = −2λ2

(k)

ρ3/2
∏N+1

i=1 (x − x(i))4


∑

i =k


 ∏

j =i,k

(x − x(j))
4


 λ2

(i)((xµ − x(k)µ)(x − x(i))
2

− (xµ − x(i)µ)(x − x(k))
2)


 (7.1)

with ρ(x) given as before by equation (3.7).
In order to be able to compare this solution to the solution of the free Weyl equation

discussed in the previous section, one has to investigate its asymptotic behaviour, i.e. its
behaviour far away from the instanton. Thus we have to expand M(k)

µ in powers of 1/r . We

shall write M(k)
µ as the sum of a ‘dipole’ and a ‘quadrupole’ term, mD

(k)µ and m
Q

(k)µ, respectively,
plus higher order contributions. It turns out that the first term of this expansion, the dipole
term, is O(r−3), the quadrupole term O(r−4). Therefore

M(k)
µ = mD

(k)µ + m
Q

(k)µ + O
(

1

r5

)
. (7.2)

Defining � as the sum of the weights λ2
(i) and X as the ‘centre of mass’ of the instanton

� =
∑
i=1

λ2
(i) and X =

∑
i=1 λ2

(i)x(i)

�
(7.3)

the dipole contribution is given by

mD
(k)µ = − 1

r3

2λ2
(k)

�1/2
[(Xµ − x(k)µ) − 2(x̂ · X − x̂ · x(k))x̂µ]. (7.4)
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If we define

n̂(i)
µ = 2x̂ · x(i)x̂µ − x(i)µ and similarly n̂(X)

µ = 2x̂ · Xx̂µ − Xµ (7.5)

we can rewrite equation (7.4) as

mD
(k)µ = − 1

r3

2λ2
(k)

�1/2

[
n̂(k)

µ − n̂(X)
µ

]
. (7.6)

We find for the quadrupole term

m
Q

(k)µ = − 1

r4

2λ2
(k)

�1/2

[
x̂µ

(∑
i λ

2
(i)x

2
(i)

�
− x2

(k)

)
+ 2

(
x̂ · Xn̂(k)

µ − x̂ · x(k)n̂
(X)
µ

)

+ 3x̂ · X
(
n̂(X)

µ − n̂(k)
µ

)
+ 4

(
x̂ · x(k)n̂

(k)
µ −

∑
i λ

2
(i)x̂ · x(i)n̂

(i)
µ

�

)]
. (7.7)

If one now wants to compare this solution asymptotically to the solution of the Weyl
equation in the absence of an instanton, one encounters the difficulty that the gauge potential
Aµ tends asymptotically to a pure gauge rather than to the vacuum, which is topologically
different.

It would be desirable to find a gauge in which Aµ approaches zero more rapidly than the
pure gauge does. Because of the topologically different nature of the vacuum and the instanton,
there exists no gauge transformation that is non-singular at all x, relating the vacuum and the
instanton. However, it turns out that one can find a singular gauge such that Aµ is (at
most) O(r−3). An easy estimate then shows that in this singular gauge ψ(k) will be—up to
and including quadrupole order—a solution not only to the Weyl equation in the instanton
background but also to the free Weyl equation. Note that since the free Weyl equation is
homogeneous, i.e. does not mix powers of r, the dipole term and the quadrupole term will
be independently solutions to the free equation. The next task will obviously be to find the
desired gauge transformation.

8. Singular gauge transformation

Under a gauge transformation, Aµ transforms as usual as

Aµ −→ A′
µ = UAµU−1 − (∂µU)U−1. (8.1)

Expanding Aµ of equation (3.6) in powers of 1/r we find

Aµ = −2iσ̄µν

[
1

r
x̂ν +

1

r2
n̂(X)

ν

]
+ O

(
1

r3

)
(8.2)

with n̂(X)
ν as in equation (7.5). If we define U ∈ SU(2) as

U = x̂ναν (8.3)

we have U−1 = x̂ν ᾱν and

U−1∂µU = −2iσ̄µν x̂ν

r
. (8.4)

Thus gauge transforming Aµ with U cancels out the 1/r contribution to Aµ. The additional
gauge transformation required to cancel out the 1/r2 contribution can be found as follows.
We write Uadd = 12 + ε for the additionally required SU(2) gauge transformation, where we
assume ε to be of O(r−1). The inverse is U−1

add = 12 − ε. Gauge transforming again we have
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A′
µ −→ A′′

µ = A′
µ + εA′

µ − A′
µε + εA′

µε − ∂µε(12 − ε). (8.5)

Thus, we can read off that the O(r−2) contribution to A′
µ will be cancelled by ∂µε. Hence,

if we are able to write the O(r−2) contribution to A′
µ as the derivative of some function ε we

will have obtained the required additional gauge transformation. Using the fact that

δµν = 1
2 (αµᾱν + ανᾱµ) (8.6)

we find for the O(r−2) contribution to A′
µ

−2iUσ̄µνU
−1 n̂(X)

ν

r2
= 1

r2

[−n̂(X)
µ + X · α(2x̂µx̂ν ᾱν − ᾱµ)

]
= ∂µ

[
x̂ · X − (X · α)(x̂ · ᾱ)

r

]
. (8.7)

Thus the additional gauge transformation is given by

Uadd = 12 +
x̂ · X − (X · α)(x̂ · ᾱ)

r
. (8.8)

Defining the self-dual symbols σµν analogously to the anti-self-dual symbols σ̄µν

σµν = 1

4i
(αµᾱν − ανᾱµ) (8.9)

it is easy to see that Uadd is indeed an SU(2) gauge transformation, since we may write

x̂ · X − (X · α)(x̂ · ᾱ) = −2iσµνXµx̂ν (8.10)

where we have used

αµᾱν = 2iσµν + δµν. (8.11)

Note that the σµν take their values in the Lie algebra of SU(2) as do the σ̄µν .
It is remarkable that the additional gauge transformation depends only on the centre of

mass X of the instanton. In the centre of mass frame, where X = 0, the additional gauge
transformation is the identity. Thus in this frame the quadrupole term of the spinor is a solution
to the free equation even without an additional gauge transformation.

The basic quantity n̂(k)
µ ᾱµ, defined in equation (7.5), gauge transformed by U, is given by

N̂ (k)
s ≡ x̂µαµn̂(k)

ν ᾱν

= 2x̂ · x(k) − (x̂ · α)(x(k) · ᾱ)

= (x(k) · α)(x̂ · ᾱ). (8.12)

Comparing this to the singular solution discussed previously (equation (6.13)) we find that
N̂ (k)

s is precisely the matrix occurring there, with the components of the vector c determined
by the components of the position parameter x(k) of the instanton.

We write ψ̃(k) for ψ(k) fully gauge transformed by U and Uadd. Then the dipole contribution
ψD

(k) to ψ̃(k) is

ψD
(k) = x̂ · αmD

(k)µᾱµ = − 1

r3

2λ2
(k)

�1/2

[
N̂ (k)

s − N̂ (X)
s

]
. (8.13)

Note that the dipole contribution ψD
(k) will be unaffected by the additional gauge transformation

Uadd. However, ψD
(k) yields a contribution to the quadrupole term, when one performs the
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additional gauge transformation Uadd. The quadrupole contribution ψ
Q

(k) to ψ̃(k) is given by

ψ
Q

(k) = x̂ · αm
Q

(k)µᾱµ +
x̂ · X − (X · α)(x̂ · ᾱ)

r
ψD

(k)

= − 1

r4

2λ2
(k)

�1/2

[
4

(
x̂ · XN̂ (X)

s − x̂ · x(k)N̂ (X)
s + x̂ · x(k)N̂ (k)

s − 1

�

∑
i

λ2
(i)x̂ · x(i)N̂ (i)

s

)

+

(
−X2 + (X · α)(x(k) · ᾱ) − x2

(k) +

∑
i λ

2
(i)x

2
(i)

�

)]
. (8.14)

To derive this we have used

X · αn̂(k)
µ ᾱµ = 2x̂ · x(k)N̂ (X)

s − (X · α)(x(k) · ᾱ) (8.15)

and

(x · α)(x · ᾱ) = x2. (8.16)

We have in total

ψ̃(k) = ψD
(k) + ψ

Q

(k) + O
(

1

r5

)
(8.17)

where ψD
(k) + ψ

Q

(k) should be a solution not only to the Dirac equation in the instanton
background but also to the free equation. That this is indeed the case may be verified by
considering solution (6.13) with its pole shifted by x(j) and with c = x(i), which is obviously
still a solution to the free equation. This shifted solution has the expansion

[(x(i) · α)(x · ᾱ) − (x(i) · α)(x(j) · ᾱ)]

(x − x(j))4

= 1

r3
N̂ (i)

s +
1

r4

[
4x̂ · x(j)N̂ (i)

s − (x(i) · α)(x(j) · ᾱ)
]

+ O
(

1

r5

)
. (8.18)

One now easily verifies that both the dipole term ψD
(k) and the quadrupole term ψ

Q

(k) separately
solve the free equation, since one finds ψD

(k) to be a linear combination of terms of the

form r−3N̂ (i)
s and ψ

Q

(k) to be a linear combination of terms of the form r−4
[
4x̂ · x(j)N̂ (i)

s −
(x(i) · α)(x(j) · ᾱ)

]
.

Thus we find that the solution to the Dirac equation in the instanton background in this
singular gauge coincides to appropriate order with a linear combination of singular solutions
to the free equation as given by equation (8.18). In this sense the instanton ‘washes out’ the
singularity of this latter solution yielding an everywhere nicely behaved particle.

In the last section we will compare the quaternionic version of equation (8.18), given by

q(i)(q̄ − q̄(j))

|q − q(j)|4 = q(i)

[ ˆ̄q

|q|3 +
4x̂ · x(j) ˆ̄q − q̄(j)

|q|4
]

+ O
(

1

|q|5
)

(8.19)

where q(i) = x(i)µeµ and similarly q̂ = x̂µeµ, as well as the asymptotic fields ψ̃(k) in
quaternionic notation, to the general quaternionic Laurent expansion. Investigating some
special N = 2 instantons we will be able to show that the constants bµ occurring in the
quaternionic Laurent series reflect the symmetry of the underlying instanton configuration.
First we will however briefly discuss the case of an N = 1 instanton.
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9. N = 1 instanton in singular gauge

In the case of an N = 1 instanton, there exist two linearly dependent solutions to the Weyl
equation, the sum of which is equal to zero. Thus the two solutions differ only in sign. However,
the JNR formula for an N = 1 instanton is largely redundant, whereas the ’t Hooft formula
yields already the most general N = 1 instanton. As stated previously a JNR N = 1 instanton
is related to a ’t Hooft N = 1 instanton via a gauge transformation. Explicitly (see [8]),
consider a JNR instanton with potential

ρ = λ2
(1)

(x − x(1))2
+

λ2
(2)

(x − x(2))2
(9.1)

and a ’t Hooft instanton with potential

ρ,t Hooft = 1 +
λ2

(0)

(x − x(0))2
(9.2)

where

x(0) = λ2
(1)x(2) + λ2

(2)x(1)

�
and λ2

(0) = λ2
(1)λ

2
(2)

�2
|x(2) − x(1)|2. (9.3)

The JNR N = 1 instanton may then be obtained from the ’t Hooft N = 1 instanton by
conjugating with the SU(2) matrix

U0 = x(2)µ − x(1)µ

|x(2) − x(1)| αµ (9.4)

or vice versa by conjugating with the inverse of U0. This can be verified by calculating
the gauge transform of the asymptotic field ψ̃(k), k = 1, 2, given by equation (8.17), with the
gauge transformation given by U−1

0 . Thus one finds the solution to the Weyl equation in the
background of the JNR N = 1 instanton to be gauge equivalent to the solution to the Weyl
equation in the background of the ’t Hooft N = 1 instanton. The latter solution is given by

ψ,t Hooft = ±2λ2
(0)

(xµ − x(0)µ)ᾱµ

|x − x(0)|
(
(x − x(0))2 + λ2

(0)

)3/2 . (9.5)

However, it is well known [3] that the JNR N = 1 instanton and the ’t Hooft N = 1
instanton are related not only by a gauge transformation but also by a limiting process. Taking
the JNR scalar potential

ρ(x) =
N+1∑
i=1

λ2
(i)

(x − x(i))2

the ’t Hooft scalar potential

ρ(x) = 1 +
N∑

i=1

λ2
(i)

(x − x(i))2

may be regained in the limit |x(N+1)| → ∞, λ2
(N+1) → ∞ with λ2

(N+1)

/|x(N+1)| → 1. Similarly,
one may obtain ’t Hooft’s solution to the Weyl equation in the presence of an N = 1 instanton,
equation (9.5), via the same limiting process from Grossman’s solution equation (4.10) to the
Weyl equation in the background of a JNR N = 1 instanton. Thus the formula

ψ
(k)
,t Hooft = ρ

1/2
,t Hooft∂µ

(
φ

(k)
,t Hooft

ρ,t Hooft

)
ᾱµ k = 1, 2 (9.6)



1428 N S Manton and A F Schunck

with

φ
(1)
,t Hooft = λ2

(0)

(x − x(0))2
φ

(2)
,t Hooft = 1 (9.7)

and with ρ,t Hooft given by equation (9.2), will yield precisely ’t Hooft’s solution as stated in
equation (9.5). Expanding equation (9.5) we have

ψ,t Hooft = ±2λ2
(0)

(
x̂µᾱµ

r3
+

4x̂ · x(0)x̂µᾱµ − x(0)µᾱµ

r4

)
+ O

(
1

r5

)
. (9.8)

Comparing this to equation (8.18), one finds that the expansion of ’t Hooft’s solution agrees
with the expansion of the singular solution with shifted pole apart from a constant gauge
transformation. Note that if one includes this rigid gauge transformation in the solution,
the ’t Hooft N = 1 instanton is characterized by eight rather than by five parameters. By
comparison, if we ignore an overall multiplicative real constant, the number of parameters in
equation (8.18) is seven in total, when the additional rigid gauge transformation is included.
Thus the dipole and quadrupole terms together almost determine the background N = 1
instanton but not completely.

It will be generally convenient to include the three parameters arising from rigid gauge
transformations in the number of parameters characterizing an instanton, though they are not
of physical significance. One then finds that the general ADHM N-instanton is characterized
by 8N parameters, the JNR N-instanton by 5N + 7 and the ’t Hooft N-instanton by 5N + 3.

10. N = 2 instantons and interpretation of constants

We shall now investigate the dipole and quadrupole terms of the quaternionic Laurent
expansion a bit further. As stated previously, the dipole term of this series, given by
equation (6.15), is characterized by one constant cq which is the quaternionic analogue of a
residue. However, the next term of the expansion, the quadrupole term, is instead characterized
by three constants, the interpretation of which is less clear. The quadrupole term of the Laurent
series is given by

Q ≡
3∑

i=1

bi∂iG(q) (10.1)

with the bi given by equation (5.18). Calculating the derivative of G(q) with respect to xi

explicitly we find

∂

∂xi

G(q) = −
[

ei

|q|4 +
4 ˆ̄q

|q|4 x̂i

]
. (10.2)

Note that only derivatives with respect to the spatial coordinates xi occur here, since the
derivative of G(q) with respect to the time coordinate x0 is determined via the Cauchy–
Riemann–Fueter equation, once the spatial derivatives are known. However, this explicitly
breaks the symmetry between the time coordinate and the spatial coordinates. Setting

b̃0ei − b̃i ≡ bi with b̃µ ∈ H (10.3)

we may restore this symmetry in the equations. We then find for the quadrupole term

Q =
3∑

i=1

−bi

[
ei

|q|4 +
4 ˆ̄q

|q|4 x̂i

]

= −[
b̃0 − ∑3

i=1 b̃iei

]
|q|4 +

4
[ ∑3

µ=0 x̂µb̃µ

]
ˆ̄q

|q|4 (10.4)
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x(1)

x(2)

x(3)

a(1)

a(2)

a(3)

Figure 1. The circle and ellipse associated with an N = 2 instanton in R4 and one member of
the porism of triangles with vertices x(1), x(2) and x(3) on the circle and tangent to the ellipse at
a(1), a(2) and a(3).

where we have used
∑3

i=1 ei x̂i ˆ̄q = 1 − x̂0 ˆ̄q to derive the last line. We may simplify notation
further assuming the b̃µ to be the components of some quaternionic-valued vector b̃ and
writing b̃q = b̃0 +

∑3
i=1 b̃iei and ˜̄bq = b̃0 − ∑3

i=1 b̃iei , respectively. We then have

Q = − ˜̄bq

|q|4 + 4x̂ · b̃
ˆ̄q

|q|4 . (10.5)

However, one should note that this notation is somewhat misleading, since the components
b̃µ of b̃q are themselves quaternions. Therefore ˜̄bq will in general not be the quaternionic
conjugate of b̃q . Nevertheless this notation proves to be useful, as can be seen directly
when comparing equation (10.5) to the O(r−4) contribution to equation (8.19). These two
expressions have a functionally similar form, which will allow us to read off the constants b̃µ

for the quadrupole term of some specific instanton configuration.
Note that the number of parameters occurring in the Laurent series up to quadrupole

order is 15, if we ignore an overall multiplicative real constant, but include rigid gauge
transformations. This should be compared with 16 parameters describing an N = 2 instanton
if one includes rigid gauge transformations. Hence, as in the N = 1 instanton case, the dipole
and quadrupole terms together almost determine the background instanton but not completely.
In the remainder we will show that the parameters b̃µ are related to the symmetry of the
underlying two-instanton configuration.

With each N = 2 instanton in R4 there is an associated pair of a circle and an ellipse,
which satisfies the Poncelet condition, which means that there is a porism (or one-parameter
family) of triangles with vertices on the circle and tangent to the ellipse, see figure 1. In fact,
if one such triangle exists then there is automatically a porism of triangles and any point on
the circle may be a vertex. From this geometrical data one may reconstruct the instanton fields
in JNR form (see [8]) by choosing one triangle of the porism with vertices x(1), x(2) and x(3)

on the circle, and tangent to the ellipse at a(1), a(2) and a(3). Then define weights λ2
(1), λ

2
(2) and

λ2
(3) up to a common multiple, by

λ2
(1)

λ2
(2)

= |x(1) − a(3)|
|a(3) − x(2)| etc. (10.6)

The JNR potential is then given by

ρ =
3∑

i=1

λ2
(i)

(x − x(i))2
. (10.7)
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X X X

µ2µ2 λ2

x(1) = 0x(2) = −x(3) x(3)

Figure 2. The three vertices associated with an N = 2 instanton in R4 are chosen to be collinear.
This is the limiting case of a general N = 2 instanton in R4, for which the three vertices lie on a
circle.

If another triangle of the porism is chosen, then a different expression for the scalar potential
ρ is obtained, but the instanton will change only by a gauge transformation. This corresponds
to the gauge invariance noted by Jackiw, Nohl and Rebbi, which moving the vertices around
the circle will change the instanton only by a gauge transformation.

As the first example we will consider the limiting case of an N = 2 instanton, where
x(1), x(2) and x(3) are collinear, with x(1) = 0 and x(2) = −x(3), as shown in figure 2. Note that
in this limiting case the associated ellipse becomes degenerate. The scale parameters λ2

(i) are
given by λ2

(1) = λ2 and λ2
(2) = λ2

(3) = µ2. Thus the centre of mass is X = 0, and the sum of
the weights is given by � = λ2 + 2µ2.

There are three solutions ψ̃(k), whose dipole and quadrupole terms are given by equations
(8.13) and (8.14), respectively. However, since ψ̃(1) + ψ̃(2) + ψ̃(3) = 0, these three solutions
are linearly dependent. Thus it is convenient to consider suitable linear combinations, which
we will choose to reflect the symmetry of the instanton. These are

ψ̃(a) = ψ̃(2) − ψ̃(3) and ψ̃(b) = ψ̃(1). (10.8)

We then find for the expansion of ψ̃(a)

ψ̃ (a) = − 4µ2

�1/2

1

r3
N̂ (2)

s + O
(

1

r5

)
. (10.9)

Here we have used that since N̂ (k)
s = (x(k) · α)(x̂ · ᾱ) and x(3) = −x(2), therefore

N̂ (3)
s = −N̂ (2)

s . Note that the quadrupole contribution to ψ̃(a) vanishes. For ψ̃(b) we find
instead

ψ̃(b) = − 1

r4

2λ2µ2

�3/2

[−8x̂ · x(2)N̂ (2)
s + 2x2

(2)

]
+ O

(
1

r5

)
. (10.10)

Here the dipole contribution is equal to zero. Note that ψ̃(b) can be written as the sum of two
shifted dipoles, namely

ψ̃(b) ≈ −2λ2µ2

�3/2

[
(x(2) · α)(x · ᾱ − x(2) · ᾱ)

(x − x(2))4
+

(x(3) · α)(x · ᾱ − x(3) · ᾱ)

(x − x(3))4

]
. (10.11)

This will give the correct expansion of ψ̃(b) at least up to quadrupole order. In contrast, ψ̃(a)

can be interpreted as a pure dipole at x(1) = 0.
We have for ψ̃(a), ψ̃ (b), respectively, in quaternionic notation

ψ̃(a) = − 4µ2

�1/2
q(2)

ˆ̄q

|q|3 + O
(

1

|q|5
)

(10.12)

ψ̃(b) = −4λ2µ2

�3/2
q(2)

[−4x̂ · x(2) ˆ̄q + q̄(2)]

|q|4 + O
(

1

|q|5
)

. (10.13)
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Now we are able to read off the constants b̃µ characterizing the quadrupole term of the
quaternionic Laurent series. For ψ̃(b),

b̃µ = 4λ2µ2

�3/2
q(2)x(2)µ = 4λ2µ2

�3/2
x(2)µx(2)νeν. (10.14)

One easily checks that this gives also the correct constant contribution to the quadrupole term.
For ψ̃(a) the b̃µ are all zero as there is no quadrupole term. The constant q(2) can be interpreted
as the residue of ψ̃(a). Note that, if one chooses the vertices to lie on some particular axis, say
the xµ-axis, only one of the parameters is not equal to zero, namely b̃µ, which is proportional
to eµ.

This nicely reflects the symmetry of the configuration of vertices, if one assumes a generic
quaternion q = x0 + xiei to be invariant under the following (generalized) rotations of R3.
Consider, for example, a rotation of R3, which means xi −→ Rijxj with R ∈ SO(3). Note
that the quaternionic basis vectors ei are in a sense arbitrary, since one may take linear
combinations of them leading to an equivalent description of H. If we identify the space
spanned by ei with the space spanned by Rt

jiei , the map of R3 into the space of the pure
quaternions with x0 = 0 is spherically symmetric under the orthogonal transformation R,
since then q = xiei �→ q = Rijxj ei = xjR

t
jiei = xj ẽj ≡ xj ej . In other words, under such

transformations the generic quaternion q will be invariant.
For example, the general dipole term of the Laurent expansion LD will under a rotation

xi �→ Rijxj transform as

LD = (c0 + ciei)
q̄

|q|4 �→ (c0 + ciRji ẽj )
x0 − xi ẽi

|q|4 ≡ (c0 + ciRjiej )
ˆ̄q

|q|3 . (10.15)

If we write the product of two basic quaternions

eiej = −δij + εijkek (10.16)

in terms of the new basis, we find (since det(R) = 1)

eiej = RmiẽmRnj ẽn = −δij + det(R)εijnRmnẽm = −δij + εijnen. (10.17)

We are now in a position to investigate the symmetry properties under rotations of solutions
ψ̃(a) and ψ̃(b), equations (10.12) and (10.13), respectively. If one chooses, for example, the
vertices in the above example to lie on the x0-axis, the background instanton is spherically
symmetric in the spatial directions. But under a spatial rotation in the above sense, ψ̃(a)

remains invariant as does ψ̃(b). Thus ψ̃(a) and ψ̃(b) show the same symmetry properties as the
background.

As our next example we will consider an instanton, where x(1), x(2) and x(3) lie at the
vertices of an equilateral triangle, such that

∑
x(i) = 0, x2

(i) = 1 and where the weights are all
equal, λ2

(i) = λ2. For definiteness we shall assume that the triangle lies in the (x1, x2) plane,
see figure 3. We have

x(1) =




0
cos α

sin α

0


 x(2) =




0
− 1

2 (cos α +
√

3 sin α)

− 1
2 (sin α − √

3 cos α)

0


 x(3) = −(x(1) + x(2)). (10.18)

Here we have explicitly accounted for the fact that moving the vertices around the circle
corresponds to a gauge transformation. Thus all configurations arising from different values
of α in equation (10.18) are related via gauge transformations. Here again we shall consider
suitable linear combinations of the three linearly dependent solutions ψ̃(k), respectively,
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x1

x2

x(1), λ
2

x(2), λ
2

x(3), λ
2

Figure 3. The Poncelet pair of two concentric circles associated with the circularly symmetric
N = 2 instanton and one member of the porism of triangles with vertices on the outer circle and
tangent to the inner circle.

ψ̃(1) = − 2λ√
3

[
q(1)

|q|3 +
4

3|q|4 (−2x̂ · x(2)q(2) + x̂ · x(1)q(1)

− x̂ · x(1)q(2) − x̂ · x(2)q(1))

]
ˆ̄q + O

(
1

|q|5
)

(10.19)

ψ̃(2) = − 2λ√
3

[
q(2)

|q|3 +
4

3|q|4 (−2x̂ · x(1)q(1) + x̂ · x(2)q(2)

− x̂ · x(1)q(2) − x̂ · x(2)q(1))

]
ˆ̄q + O

(
1

|q|5
)

(10.20)

ψ̃(3) = − 2λ√
3

[
−q(2) + q(1)

|q|3 +
4

3|q|4 (x̂ · x(1)q(1) + x̂ · x(2)q(2)

+ 2(x̂ · x(1)q(2) + x̂ · x(2)q(1)))

]
ˆ̄q + O

(
1

|q|5
)

. (10.21)

These are

ψ(a) = ψ̃(1) + ωψ̃(2) + ω2ψ̃(3) (10.22)

ψ(b) = ψ̃(1) + ω2ψ̃(2) + ωψ̃(3) (10.23)

with ω = exp(2πk/3) = − 1
2 (1 − √

3k). To calculate these linear combinations it is useful to
note that

q(1) = i exp(−kα) q(2) = ωq(1) q(3) = ω2q(1). (10.24)

We then find

ψ(a) = 4
√

3λ

|q|4 exp(2kα)(−ix̂1 + jx̂2) ˆ̄q + O
(

1

|q|5
)

(10.25)

ψ(b) = −2
√

3λ

|q|3 exp(kα)i ˆ̄q + O
(

1

|q|4
)

. (10.26)
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ψ(a) is a pure quadrupole and ψ(b) is a pure dipole with no quadrupole. The left-multiplicative
factors exp(2kα) and exp(kα), respectively, nicely reflect the fact that moving the vertices
around the circle corresponds to a gauge transformation. We can now read off the constants
b̃µ from ψ(a). Setting α = 0 from now on, we have

b̃ =
√

3λ




0
−i
j

0


 . (10.27)

Since the gauge-invariant data of this instanton configuration are given by the Poncelet
pair of two concentric circles [6] as shown in figure 3, we have circular symmetry in the
(x1, x2) plane. As in our previous example the solutions ψ(a) and ψ(b), equations (10.25) and
(10.26), respectively, exhibit the same symmetry properties as the background. Thus if

xi �→ Rijxj with R =

cos β −sin β 0

sin β cos β 0
0 0 1


 (10.28)

we find that

ψ(a) �→ exp(−2kβ)ψ(a) (10.29)

ψ(b) �→ exp(−kβ)ψ(b). (10.30)

Hence, under rotations ψ(a) and ψ(b) are invariant up to a gauge transformation.
Note that the Weyl equation is not invariant under reflections. Yet the background instanton

is invariant under reflections in the (x1, x2) plane, and also under the reflection x3 �→ −x3. In
order to show that the spinor solutions respect this symmetry, we will make use of the fact that
two successive reflections correspond to a rotation. We will therefore combine a reflection,
say x1 �→ −x1, with the reflection x3 �→ −x3. The combination of these is the 180◦ rotation
xi �→ Rijxj , with

R =

−1 0 0

0 1 0
0 0 −1


 . (10.31)

We find for the transformation of ψ(a) and ψ(b), respectively,

ψ(a) �→ ψ(a) (10.32)

ψ(b) �→ −ψ(b). (10.33)

Hence, under this combination of reflections we find ψ(a) and ψ(b) to be invariant up to a gauge
transformation. Similarly, there is invariance for any reflection axis in the (x1, x2) plane.

So far we have only investigated two highly symmetric N = 2 instantons. As the final
example, we discuss the case where the circle and ellipse, the gauge-invariant data of an
N = 2 instanton, are concentric, see figure 4. Note that the moduli space associated with
a general N = 2 instanton is—excluding rigid gauge transformations—a 13-dimensional
manifold whereas the orbits of the conformal group are 12-dimensional. After quotienting
out the latter a general N = 2 instanton is described by only one free parameter. Indeed it
may be proved that any N = 2 instanton is conformally related to an instanton of which the
gauge-invariant data are given by the Poncelet pair of a concentric circle and ellipse, the one
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x1

x2

x(1), λ
2

x(2), µ
2

x(3), µ
2

a
b

Figure 4. The Poncelet pair of a concentric circle and ellipse associated with the general N = 2
instanton and one member of the porism of triangles with vertices on the circle and tangent to the
ellipse.

free parameter being the eccentricity a/b of the ellipse. In this sense an N = 2 instanton with
associated concentric circle and ellipse is the most general one.

Suppose, in figure 4, the radius of the circle is r = 1. A porism of triangles with vertices
on the circle and tangent to the ellipse exists if and only if a + b = r . For simplicity we
will explicitly choose one member of the porism of triangles, such that x(1), x(2) and x(3) are
given by

x(1) =




0
1
0
0


 x(2) =




0
−a√
1 − a2

0


 x(3) =




0
−a

−√
1 − a2

0


 . (10.34)

The weights associated with the vertices may be calculated using equation (10.6). Scaling the
weights such that λ2

(1) = λ2 = 1, we find for λ2
(2), λ2

(3), respectively

λ2
(2) = λ2

(3) = µ2 = a

b
. (10.35)

Again we find suitable linear combinations of the three dependent solutions ψ̃(k), k = 1, 2, 3,
such that the two resulting solutions form a natural basis of the solution space. The expressions
for ψ̃(k) are similar to equations (10.19), (10.20), (10.21) but a bit more elaborate. The linear
combinations are

ψ(A) = ψ̃(1) + k
1√
�

(ψ̃(2) − ψ̃(3)) (10.36)

ψ(B) = ψ̃(1) − k
1√
�

(ψ̃(2) − ψ̃(3)) (10.37)

where � = (1 − a)/(1 + a). We find that ψ(A) is again a pure quadrupole, and ψ(B) is a pure
dipole. They are, respectively,

ψ(A) = 1

|q|4
8a√
�

[4(−iax̂1 + jbx̂2) ˆ̄q + (b − a)] + O
(

1

|q|5
)

(10.38)

ψ(B) = − 1

|q|3
8a√
�

i ˆ̄q + O
(

1

|q|4
)

. (10.39)
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It is now easy to read off that the constants b̃µ associated with ψ(A) are

b̃ = 8a

�1/2




0
−ia
jb
0


 . (10.40)

In this example the background field exhibits just a 180◦ rotational symmetry in the
(x1, x2) plane and two reflection symmetries, namely under the transformations x1 �→ −x1

and x2 �→ −x2, respectively. Under the 180◦ rotation in the (x1, x2) plane we find for the
transformation of ψ(A) and ψ(B), respectively

ψ(A) �→ ψ(A) (10.41)

ψ(B) �→ −ψ(B). (10.42)

Investigating the symmetry properties of the two solutions under reflections we encounter
the same problem as in the case of the circularly symmetric instanton, namely that the Weyl
equation itself is not invariant under reflections. However, we may tackle this problem in
exactly the same way as before. We will therefore consider the transformation of ψ(A) and
ψ(B) under the following two rotations, which are each combinations of two reflections:

xi �→ Rijxj with R =

−1 0 0

0 1 0
0 0 −1


 (10.43)

and

xi �→ Rijxj with R =

1 0 0

0 −1 0
0 0 −1


 . (10.44)

Thus, the first rotation consists of the combined reflections x1 �→ −x1 and x3 �→ −x3, whereas
the second consists of the combined reflections x2 �→ −x2 and x3 �→ −x3. We find for the
transformation of ψ(A) and ψ(B) under the rotation given by equation (10.43)

ψ(A) �→ ψ(A) (10.45)

ψ(B) �→ −ψ(B) (10.46)

and under the rotation given by equation (10.44)

ψ(A) �→ ψ(A) (10.47)

ψ(B) �→ ψ(B). (10.48)

Note that again the two solutions respect the symmetry properties of the background instanton.

11. Conclusion

We have seen that a non-trivial solution to the free Weyl equation in Euclidean 4-space, which
is bounded at infinity, necessarily exhibits a singularity at one point at least. In the simplest
case such a solution is in quaternionic notation given by

�q = aq

q̄ − b̄q

|q − bq |4 (11.1)
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and thus parametrized by two quaternionic constants, aq and bq , respectively. Here aq is the
quaternionic analogue of a residue and as such it may be interpreted as the ‘spinorial charge’ of
the spinor wavefunction. The spinor carrying this spinorial charge is clearly localized around
bq, bq being the position parameter of �q .

Solutions to the Weyl equation in the background of an arbitrary JNR N-instanton,
however, are normalizable and regular in the whole of Euclidean 4-space [4]. Comparing
the asymptotic behaviour of these solutions with the asymptotic behaviour of the singular
solution to the free Weyl equation, we found that the former solutions can be written up
to order O(|q|−4) as linear combinations of the latter. In this sense the introduction of the
instanton gauge field results in a delocalization of the spinor. Investigating some special
N = 2 instantons we were able to show that the parameters describing this delocalized spinor
reflect the geometry of the underlying instanton configuration.
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